The Synchronized Aggregation of Beliefs and Probabilities

Christian J. Feldbacher-Escamilla

Autumn 2017

Project Information

Talk(s):

- Feldbacher-Escamilla, Christian J. (2017-09-24/2017-08-27). Stability Preservation in Social Context. Conference. Presentation (contributed). XXIV. Kongress der Deutschen Gesellschaft für Philosophie: Norm und Natur. HU Berlin: German Society for Philosophy (DGPhil).
- Feldbacher-Escamilla, Christian J. and Thorn, Paul D. (2016-07-04/2016-07-06). The Synchronized Aggregation of Beliefs and Probabilities. Conference. Presentation (contributed). European Epistemology Network (EEN) 2016. EHESS: Institut Jean-Nicod, CNRS, Paris IV.
- Feldbacher-Escamilla, Christian J. (2016-03-08/2016-03-11). The Synchronized Aggregation of Beliefs and Probabilities. Conference. Presentation (contributed). GWP. 2016. University of Duesseldorf: GWP \& DCLPS.

Introduction

Classical epistemology and philosophy of science: individual belief, degrees of belief, justification, knowledge, ...

Social epistemology and modern approaches in the pos: consideration also of collective/group agency;

Relevant topics:

- bridging degrees of belief and belief (also: 'binarization')
- bridging individual beliefs/degrees of belief and collective ones

Here we consider bridging degrees of belief and belief in a collective setting: Are they synchronized?

Contents

(1) BB: Belief Binarization

(2) JA: Judgement Aggregation
(3) $\mathrm{BB}+\mathrm{JA}$

BB: Belief Binarization

Intro

Two important notions: Bel and Pr

```
(Bel)
\(\operatorname{Bel}(T), \neg \operatorname{Bel}(\perp)\),
\(\operatorname{Bel}(\varphi)\) and \(\varphi \vdash \psi \Rightarrow \operatorname{Bel}(\psi)\),
\(\operatorname{Bel}(\varphi) \& \operatorname{Bel}(\psi) \Rightarrow \operatorname{Bel}(\varphi \& \psi)\)
```

$$
\begin{array}{r}
\operatorname{Pr}(\mathrm{T})=1, \operatorname{Pr}(\varphi) \geq 0, \\
\varphi \forall \psi \Rightarrow \operatorname{Pr}) \\
\operatorname{Pr}(\varphi \vee \psi)=\operatorname{Pr}(\varphi)+\operatorname{Pr}(\psi), \\
\operatorname{Pr}(\psi)>0 \Rightarrow \operatorname{Pr}(\varphi \mid \psi)=\frac{\operatorname{Pr}(\varphi \& \psi)}{\operatorname{Pr}(\psi)}
\end{array}
$$

Lockean Bridging:
(L) $\operatorname{Bel}(\varphi) \Leftrightarrow \operatorname{Pr}(\varphi) \geq r \geq \frac{1}{2}$
E.g.: You believed 'Hillary Clinton will be ...', because ... there was no alternative ...

The Lottery Paradox

Henry Kyburg's well-known example (1961):
Assume:

- $\operatorname{Pr}\left(t_{1}=w\right)=\cdots=\operatorname{Pr}\left(t_{1.000 .000}=w\right)=\frac{1}{1.000 .000}$
- $\operatorname{Pr}\left(t_{1}=w\right)+\cdots+\operatorname{Pr}\left(t_{1.000 .000}=w\right)=1$

Then, by help of (Bel), (Pr), (L) we get:

- We get $\operatorname{Bel}\left(t_{1}=w \vee \cdots \vee t_{1.000 .000}=w\right)$
- But also $\operatorname{Bel}\left(t_{1} \neq w\right) \& \ldots \& \operatorname{Bel}\left(t_{1.000 .000} \neq w\right)$
- And by \&-closure: $\operatorname{Bel}\left(t_{1} \neq w \& \ldots \& t_{1.000 .000} \neq w\right)$
- Hence, again by \&-closure: $\operatorname{Bel}(\perp)$, hence \langle

So, at least at first glance, (Bel), (Pr), (L) seem to be incompatible.

STB: The Stability Theory of Belief

Hannes Leitgeb's stability approach (2014):

Two principles:
(1) Re-interpretation of the scopes of the hidden quantifiers in (L) : Instead of $\exists r \forall \operatorname{Pr}(\mathrm{~L})$ assume $\forall \operatorname{Pr} \exists r(\mathrm{~L})$
(2) Fit r (relevantly <1) to your set of beliefs by a stability constraint:

$$
\varphi \text { is } \operatorname{Pr} \text {-stable-r iff for all } \psi: \varphi \not\langle\psi \Rightarrow \operatorname{Pr}(\varphi \mid \psi) \geq r
$$

Leitgeb's adequacy-result: The representation theorem:

Theorem (cf. Leitgeb 2014, p.140)

(Bel), (Pr), (L) iff (Bel) is Pr-stable-r axiomatizable.

The STB-Solution to the Paradox

It explains our intuitions on

- 'Surely ticket t_{i} wont win.', and
- 'Surely some ticket will win.'
by reference to different contexts:

(2)
- Context: $t_{i} \neq w$ vs. $t_{1}=w \vee \cdots \vee t_{i-1}=w \vee t_{i+1}=w \vee t_{1.000 .000}=w$ Solution: Pr-stable axiomatizable is $\operatorname{Bel}($ (2)), but also $\operatorname{Bel}(1) \&(2)$).
(3)
- Context: $t_{1}=w$ vs. \ldots vs. $t_{i}=w$ vs. ... vs. $t_{1.000 .000}=w$ Solution: Pr-stable axiomatizable is only $\operatorname{Bel}($ (3) $\vee(2)$).

Some Problems of the STB-Solution

Main discussions on STB are about:

- the context-sensitivity of the choice of r
- the limited possibilites for Bel - for further impossibility results cf. (Rott)

Further Application of STB

Nevertheless, STB seems to bring about the right results also when applied to further specifications of (Bel) and (Pr).

Take, e.g., revision:

- for the domain of Be we have principles of belief revision, the AGM postulates, connecting $\mathrm{Bel}_{\text {new }}$ with $\mathrm{Bel}_{\text {old }}$
- for the domain of Pr we have principles of Bayesian update: conditionalization, connecting $P r_{\text {new }}$ with $P r_{\text {old }}$

Here Pr-stability is preserved (cf. Leitgeb 2013);
But what about aggregation? Is Pr-stability also preserved among aggregations from individual beliefs/degrees of belief to collective ones?

JA: Judgement Aggregation

Intro

The problem of judgement aggregation:

	φ	ψ	χ
$B e I_{1} / \operatorname{Pr}_{1}$	$\{0,1\} /[0,1]$	$\{0,1\} /[0,1]$	$\{0,1\} /[0,1]$
$B e l_{2} / \operatorname{Pr}_{2}$	$\{0,1\} /[0,1]$	$\{0,1\} /[0,1]$	$\{0,1\} /[0,1]$
$B e l_{3} /$ Pr $_{3}$	$\{0,1\} /[0,1]$	$\{0,1\} /[0,1]$	$\{0,1\} /[0,1]$
$\operatorname{Bel}_{\{1,2,3\}} / \operatorname{Pr}_{\{1,2,3\}}$	$?$	$?$	$?$

Qualitatively: $\mathrm{Be}_{\{1,2,3\}}=\operatorname{aggr}\left(\mathrm{Be}_{1}, \mathrm{Be}_{2}, \mathrm{Be}_{3}\right)$
Quantitatively: $\operatorname{Pr}_{\{1,2,3\}}=\operatorname{aggr}\left(\operatorname{Pr}_{1}, \operatorname{Pr}_{2}, \operatorname{Pr}_{3}\right)$
Problem: Characteristics of aggr?

Minimal Conditions for JA I

Minimal requirements for aggregating beliefs and degrees of beliefs in groups of size n are (cf. List\&Pettit 2002): aggr: Beln $/ \mathrm{Pr}^{n} \longrightarrow \mathrm{Bel} / \mathrm{Pr}$ with:

- (U) Universality: aggr allows as input any Bel, Pr satisfying (Bel), (Pr).
- (A) Anonymity: aggr cannot identify any specific input $\operatorname{aggr}\left(\mathrm{Be}_{1}, \ldots, \mathrm{Be}_{n}\right)=\operatorname{aggr}\left(\mathrm{Bel}_{1}, \ldots, \mathrm{Be}_{n}, \mathrm{Be}_{n-1}\right)=\ldots$; similarly for the aggregation of $\operatorname{Pr} ;$

Minimal Conditions for JA II

Furthermore, aggr is systematic (transparent):

- (S) Systematizity: aggr is functional an propositionwise

```
Bel}{{1,\ldots,n}(\varphi)=\mp@subsup{\operatorname{aggr*}}{*}{*}(\mp@subsup{\operatorname{Bel}}{1}{}(\varphi),\ldots,\mp@subsup{\operatorname{Bel}}{n}{}(\varphi)
where aggr*}(Be\mp@subsup{l}{1}{}(\varphi),\ldots,Be\mp@subsup{I}{n}{}(\varphi))=\operatorname{aggr}(Be\mp@subsup{l}{1}{},\ldots,Be\mp@subsup{I}{n}{})(\varphi)
similarly for Pr;
```


Impossibility: Beliefs

Take, e.g.:

	φ	ψ	$\varphi \& \psi$
Be_{1}	1	1	1
Be_{2}	1	0	0
Be_{3}	0	1	0
$\mathrm{Be}_{\{1,2,3\}}$	1	1	0

Here an aggregation by majority voting ($\operatorname{Be}_{\{1,2,3\}}$) produces an incoherent result.

A general impossibility result:

Theorem (cf. List\&Pettit 2002)

(Bel), (U), (A), (S) are not jointly satisfiable by any aggr.

Impossibility: Degrees of Belief

Considering a further constraint:

- (IP) Independence Preservation: aggr preserves probabilistic independences in groups
I.e.: If $\left.\operatorname{Pr}_{i}(\varphi \mid \psi)=\operatorname{Pr}_{i}(\varphi)(1 \leq i \leq n)\right)$, then also $\operatorname{aggr}\left(\operatorname{Pr}_{1}, \ldots, \operatorname{Pr}_{n}\right)(\varphi \mid \psi)=\operatorname{aggr}\left(\operatorname{Pr}_{1}, \ldots, \operatorname{Pr}_{n}\right)(\varphi)$;
one also ends up with an impossibility result for degrees of belief:
Theorem (cf. Lehrer\&Wagner 1983)
(Pr), (U), (A), (S), (IP) are not jointly satisfiable by any aggr.

Solutions

Solutions to these problems are:

- Vs. (U) by domain restriction (e.g. by ensuring convergence)
- Vs. (A) by favouring, e.g., expert judgements
- Vs. (S) by structuring the propositions before the aggregation (e.g. premise-based approach)
- Vs. (IP) by accepting different update behaviour
- Vs. the choice of a single aggr by a purpose dependent choice of different aggrs

One might ask whether BB, especially STB, provides some help in figuring out further solutions (e.g. vs. (U))?

But also, as questioned above: Is Pr-stability-r synchronizing $\left.B e\right|_{\{1, \ldots, n\}}$ and $\operatorname{Pr}_{\{1, \ldots, n\}}$?
$B B+J A$

Intro

A short upshot:

- BB: Bel and Pr can be bridged by L, if $B e l$ is Pr-stable- r axiomatizable.
- JA: Some properties within a group cannot be preserved generally in collective judgements: e.g., (IP), given (Pr), (U), (A), (S);
- BB+JA: Is Pr-stability- r preserved in collective judgements?

Two Types of Stability in JA

In JA Pr may vary among the members of a group.

But also r might vary. Depending on variation we may distinguish two types of stability-preservation $(1 \leq i \leq n)$:

- Global: $B e l_{i}$ is $P r_{r_{i}}$-stable- r axiomatizable.
- Local: $B e l_{i}$ is $P r_{i}$-stable- r_{i} axiomatizable.

Stability Preservation as a Desideratum in JA?

One might ask why universal properties of individual beliefs/degrees of belief should be preserved in pooling them?

A general answer might be seen in the maximization of individual interests and by this also the increased acceptability of a pooling result.

So, a general pooling-maxim might be: If each $B e l_{i}$ or P_{i} has property Q, then also $\operatorname{aggr}\left(B e l_{1}, \ldots, B e l_{n}\right)$ or $\operatorname{aggr}\left(\operatorname{Pr}_{1}, \ldots, \operatorname{Pr}_{n}\right)$ should have Q.
E.g.: (IP); in case of comparability one might prefer that aggregation method that maximizes the preservation of universal properties.

Local Stability Preservation

The explicit formulation of the local stability preservation constraint is as follows:

- (LSP) Local Stability Preservation: If Be_{i} can be Pr_{i}-stable- r_{i} axiomatized $\left(1 \leq i \leq n\right.$; for some $\left.r_{1}, \ldots, r_{n}<1\right)$, then also $\operatorname{aggr}\left(B e l_{1}, \ldots, B e l_{n}\right)$ can be $\operatorname{aggr}\left(\operatorname{Pr}_{1}, \ldots, \operatorname{Pr}_{n}\right)$-stable- r axiomatized (for some $r<1$).

One can observe that:

Observation

(Bel), (Pr), (LSP) is not generally satisfied by aggr.

Global Stability Preservation

The explicit formulation of the global stability preservation constraint is as follows:

- (GSP) Global Stability Preservation: If there is a unique Pr $_{i}$-stable- r axiomatization of $\mathrm{Bel}_{i}(1 \leq i \leq n)$, then also $\operatorname{aggr}\left(\mathrm{Be}_{1}, \ldots, \mathrm{Be}_{n}\right)$ can be $\operatorname{aggr}\left(P r_{1}, \ldots, P r_{n}\right)$-stable- r axiomatized.

One can observe that:

Observation

(Bel), (Pr), (GSP) is satisfied by any linear aggr.
(where such a method can always be described by $\operatorname{aggr}\left(\operatorname{Pr}_{1}, \ldots, \operatorname{Pr}_{n}\right)(\varphi)=$ $\left.\sum_{1 \leq i \leq n} w_{i} \cdot \operatorname{Pr}_{i}(\varphi)\right)$

Summary

- One candidate for belief binarization or bridging: STB
- STB has some faults, but seems to be quite natural inasmuch as stability is preserved among classical solutions for the different domains
- E.g.: Belief revision and Conditionalisation
- This continues also in the social setting: GSP

References I

Kyburg (Jr.), Henry (1961). Probability and the Logic of Rational Belief. Middletown: Wesleyan University Press.
Leitgeb, Hannes (2013). "Reducing Belief Simpliciter to Degrees of Belief". In: Annals of Pure and Applied Logic 164.12. Logic Colloquium 2011, pp. 1338-1389. Doi: 10.1016/j.apal. 2013.06.015.

- (2014). "The Stability Theory of Belief". In: Philosophical Review 123.2, pp. 131-171. DOI: 10.1215/00318108-2400575.

List, Christian and Pettit, Philip (2002). "Aggregating Sets of Judgments: An Impossibility Result". In: Economics and Philosophy 18.01, pp. 89-110.

Appendix

Ad (GSP):

- Assume Pr $_{i}$-stability- r amongst the group.
- Then, there is a φ such that for any $\psi: \operatorname{Pr}_{i}(\varphi \mid \psi) \geq r$.
- Since linear opinion pooling is convex, we get $\operatorname{aggr}\left(\operatorname{Pr}_{1}, \ldots, \operatorname{Pr}_{n}\right)(\varphi \mid \psi) \geq r$.
- Hence, φ is also $\operatorname{aggr}\left(P r_{1}, \ldots, P r_{n}\right)$-stable- r.

